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Abstract 

 
The purpose of this paper is to price quanto interest-rate exchange options (QIREOs) 

based on a practical and easy-to-use interest-rate model. A new model, namely the 

cross-currency LIBOR market model, is used to extend the initial LIBOR market model from 

a single-currency economy to a cross-currency economy. The cross-currency LIBOR market 

model is suitable and applicable to pricing a variety of quanto-type interest-rate derivatives. 

Four different types of quanto interest-rate exchange options are priced in this article. 

Hedging strategies and calibration procedures are also examined in detail for practical 

implementation. Furthermore, Monte-Carlo simulation is provided to evaluate the accuracy of 

the theoretical prices. 
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1. Introduction 

Quanto interest-rate exchange options (QIREOs), also known as interest-rate difference 

options, are options written on the difference between two interest rates that are available in 

different currencies or between two interest rates in one currency, with the final payments 

made in domestic currency. Interest rate volatility during the past decade has magnified the 

risk due to an unfavorable shift in the term structure of interest rates, thereby leading to a 

dramatic increase in the number and types of contingent claims that incorporate options on 

change in the level of interest rates. These products have been developed to enhance the 

ability of asset/liability managers to alter their interest-rate exposure. As a result, QIREOs are 

evolved to exploit interest-rate differentials without directly incurring exchange-rate risk. 

The applications of QIREOs are quite extensive and similar to those of differential swaps. 

However, QIREOs provide more flexibility in certain applications. First, QIREOs provide a 

mechanism for achieving a payoff based on the differential of interest rates available in two 

different currencies, which is not directly affected by movements in exchanges rates. Second, 

as compared with differential swaps, the major advantage of QIREOs is that they can be used 

to fit a very specific strategy since they can be tailored to provide payoffs that depend on 

whether the spread of two interest rates is above or below a specified level, or within or 

outside a specified range on a specific date in the future. Third, QIREOs can provide added 

precision to a strategy involving differential swaps. For example, a portfolio manager might 

use a differential swap to capitalize on anticipated yield-curve movements while also 

purchasing an QIREO on the spread in order to limit his downside risk. Moreover, money 

market investors may use QIREOs to take advantage of a high-yield currency; asset managers 

may adopt QIREOs to enhance their portfolio return; liability managers and other borrowers 

can employ QIREOs to reduce their effective borrowing rates. 

Despite the wide applications of QIREOs, the academic literature has paid little attention 

to how to price such options, especially in the framework of the LIBOR market model. 

Therefore, the purpose of this article is to price QIREOs based on a practical and easy-to-use 

interest rate model. In addition, it is worth noting that the well-known “quanto-effect” has to 

be considered as dealing with foreign assets paid in domestic currency. To achieve this aim, a 

new model, namely the cross-currency LIBOR market model, is introduced to extend the 

initial LIBOR market model from a single-currency economy to a cross-currency economy 

and then adopted to price QIREOs. 
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This paper employs the cross-currency LIBOR market model to price QIREOs for the 

following merits. Those interest-rate models that have been developed for pricing 

interest-rate derivatives can be, loosely speaking, divided into two types: traditional 

interest-rate models and market models. The traditional interest-rate models, such as the 

Vasicek model, the Cox-Ingersoll-Ross (CIR) model and the Heath-Jarrow-Morton (HJM) 

model, describe the behavior of interest rates by specifying market-unobservable and abstract 

interest rates, such as instantaneous short and forward rates. Contrarily, the LIBOR and swap 

market models are constructed by specifying market-observable LIBOR and swap rates. 

There are some drawbacks to the traditional models. First, because of their abstract and 

market-unobservable short and forward rates, the underlying market rates, such as LIBOR 

and swap rates, have to be obtained through a complicated transformation of the abstract rates. 

Second, the compounding period of their underlying rate is infinitesimal, which contradicts 

with the market convention of being discretely compounded. Third, caps (floors) and 

swaptions are the most important and popular  interest-rate products that are actively traded 

in financial markets. The pricing formulae derived from the traditional interest-rate models 

are incompatible with the widely used Black’s formula. As a result, the model calibration 

procedure is rendered difficulty to execute efficiently. Moreover, most of the traditional 

models are Gaussian term structure models. As examined in Rogers (1996), Gaussian term 

structure models have an important theoretical limitation: the rates can attain negative values 

with positive probability, a tendency which in many cases may cause some pricing errors. In 

order to improve the aforementioned drawbacks, a new approach to modelling interest-rate 

behavior has been developed. It is the LIBOR market model (LMM). 

The LMM has been developed by Musiela and Rutkowski (1997), Miltersen, Sandmann 

and Sondermann (1997), and Brace, Gatarek and Musiela (1997, BGM). Because of the 

following advantages, the model is widely adopted by practitioners. First, the rates modeled 

are the LIBOR rates, which are market-observable and consistent with the market convention 

of being discretely compounded. Second, the cap and floor pricing formulae follow the 

Black’s formula, which is consistent with market practice and makes the calibration 

procedure easier. Moreover, BGM have shown that under the forward measures forward 

LIBOR rates have a lognormal volatility structure that prevents the forward LIBOR rates 

from becoming negative with a positive probability. As a result, pricing errors arising from 

negative rates are avoided. 
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Furthermore, Wu and Chen (2007) have extended the original BGM model from a 

single-currency economy to a cross-currency case. They have also incorporated the exchange 

rate process into the general model setting. Their cross-currency LIBOR market model is 

very general. Thus, it is suitable to use this model for pricing quanto-type interest-rate 

derivatives that depend on domestic and foreign interest rates. As a result, the cross-currency 

LMM will be employed in this article to price four different types of QIREOs. 

The remainder of this article is organized as follows. Section 2 briefly describes the 

development and the framework of the cross-currency LIBOR market model, which is 

directly drawn from Wu and Chen (2007). Section 3 derives the pricing formulae of the four 

different types of QIREOs based on the cross-currency BGM (LMM) model. The hedging 

strategy of each option is also examined. Section 4 provides the calibration procedure for 

practical implementation and examines the accuracy of the pricing formulae via Monte-Carlo 

simulation. Section 5 concludes the paper with a brief summary. 

2. The Arbitrage-Free Cross-Currency HJM Model and the Arbitrage-Free 

Cross-Currency BGM Model 

In this section, we briefly describe the development and the framework of the 

cross-currency LIBOR market model as derived by Wu and Chen (2007). Subsection 2.1 

establishes an arbitrage-free cross-currency HJM model.1 Under the arbitrage-free 

relationship between the drift and the volatility terms in the cross-currency HJM model, an 

arbitrage-free cross-currency BGM model is also introduced in Subsection 2.2. 

2.1 Arbitrage-Free Cross-Currency HJM Model 

Assume that trading takes place continuously in time over an interval  0, ,0    . 

The uncertainty is described by the filtered probability space     0,
, , ,

t
F P F


  where the 

filtration is generated by independent standard Brownian motions 
�   �   �   �   1 2, ,..., mW t W t W t W t . P represents the actual probability measure. The notations 

are given below with d for domestic and f for foreign: 

 ,kf t T  =  the kth country’s forward interest rate contracted at time t for instantaneous 

borrowing and lending at time T with 0 t T    , where  ,k d f . 

 ,kP t T  =  the time t price of the kth country’s zero coupon bond (ZCB) paying one dollar 

at time T. 
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  kr t  =  the kth country’s risk-free short rate at time t. 

  k t  =   
0

exp
t

kr u du 
   , the kth country’s money market account at time t with an 

initial value  0 1k  . 

  X t  =  the spot exchange rate at  0,t   for one unit of foreign currency expressed 

in terms of domestic currency. 

Assumption 2.1 A FAMILY OF FORWARD RATE PROCESS 

For any given  0,T  , the dynamics of the forward rate  ,kf t T ,  ,k d f , follows 

the following process: 

      �  , , , , 0k fk fkdf t T t T dt t T dW t t T        , (2.1) 

where     0, : 0,kf T T   is a nonrandom initial forward curve,  ,fk t T  and 

      1, , ,..., ,fk fk fkmt T t T t T    satisfy some regular conditions.2 

Equation (2.1) is the notable HJM interest-rate model. Through the various specifications 

for the volatility coefficients, the random shocks generate significantly different qualitative 

characteristics of the forward rate processes. 

The Zero-Coupon bond price (ZCB)  ,kP t T ,  ,k d f , is defined as: 

   , exp ,
T

k kt
P t T f t u du     . (2.2) 

From (2.1) and (2.2), the dynamics of the ZCB price can be derived as given below 

 
        �  

,
, , , 0

,
k

k k Pk
k

dP t T
r t b t T dt t T dW t t T

P t T
          , (2.3) 

where       1, , ,..., ,Pk Pk Pkmt T t T t T    with  

   2, , 1,2,...,
T

Pki fkit
t T t u du for i m    

and            21, , ,
2

T

k fk Pkt
b t T t u du t T    . 

Assumption 2.2  THE SPOT EXCHANGE RATE DYNAMICS 

The dynamics of the spot exchange rate  X t  is given as follows: 

          �  X XdX t X t t dt X t t dW t   , (2.4) 

where  X t  and       1, ,...,X X Xmt T t t    satisfy some regular conditions.3 
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For greater flexibility, the number of the random shocks, m, are not designated exactly. 

Rather, they are stipulated dependent on the simplicity and accuracy required by the user. For 

example, six random shocks may be used to capture all factors causing the stochastic 

behaviors of the entire forward rate curve and the spot exchange rate. The first two random 

shocks can be interpreted, respectively, as the short-term and the long-term factors causing 

the shift of different maturity ranges on the domestic term structure. Similarly, the third and 

fourth shocks have the same effects on the foreign case. The correlation between the domestic 

and the foreign term structure is affected by the fifth shock. The remaining shock can be 

interpreted as the factor that causes unanticipated movements in the exchange rate. 

In order to make the economy both complete and arbitrage (i.e., there exists a unique 

martingale measure4), some conditions are imposed upon the previous dynamics. Under these 

conditions, the volatility terms of all the stochastic processes remain unchanged, but the drift 

terms become some special structures. These corresponding relationships between the drift 

and the volatility terms will be employed in the next section to derive the cross-currency 

LIBOR market model. 

To determine the unique domestic martingale measure,5 all assets must be denominated in 

domestic currency. Therefore, the foreign assets must be denominated in domestic currency 

and regarded as the ‘general’ domestic assets. Define      * , ,f fP t T P t T X t , 

     * ,f ft T t X t  . Then, all the domestic-currency-denominated assets are discounted by 

the domestic money market account and listed as follows: 

   
 
,

, d
Pd

d

P t T
Z t T

t
 ,      

 

* ,
, f

Pf
d

P t T
Z t T

t
 ,      

 

* ,
, f

rf
d

t T
Z t T

t



 . 

By Ito’s lemma, the stochastic processes of these domestic-currency-denominated assets 

can be expressed as follows: 

 
      �  

,
, ,

,
Pd

d Pd
Pd

dZ t T
b t T dt t T dW t

Z t T
    

 
        �  *,

, ,
,

Pf
f X Pf

Pf

dZ t T
b t T dt t t T dW t

Z t T
        

 
      �  *,

,
,

rf
f X

rf

dZ t T
t T dt t dW t

Z t T    
 

where 
             * , , ,f f f X X Pf db t T r t b t T t t t T r t         

       *
f f X dt r t t r t     
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Since the model has m random shocks, m distinct assets are needed to hedge against these 

risks. The (m-2) domestic ZCBs with different maturities, the domestic-currency-dominated 

foreign ZCB, and the foreign money market account are chosen. 

By citing Wu and Chen (2007), the dynamics of the forward rates and the exchange rate 

under the domestic martingale measure Q are presented by Proposition 2.1 as given below. 

Proposition 2.1 THE DYNAMICS UNDER THE DOMESTIC MARTINGALE MEASURE 

Under the domestic martingale measure Q, for any  0,T  , the dynamics of the 

forward rates and the exchange rate are given as follows: 

         , , , ,d fd Pd fddf t T t T t T dt t T dW t       

           , , , ,f ff Pf X ffdf t T t T t T t dt t T dW t           

 
         d f X

dX t
r t r t dt t dW t

X t
     

 
where the first subscript of fd  and ff  denotes the forward rate while the second 

represents the country, either domestic or foreign. 

It is worth emphasizing that even if the more general HJM model is considered, the drift 

restriction of the domestic forward rate for no-arbitrage still remain unchanged. However, 

for the foreign case, the drift appears to have one additional term,    ,ff Xt T t  , which 

specifies the instantaneous correlation between the exchange rate and the foreign forward rate. 

It is also observed that the drift terms of the foreign assets are augmented by the 

instantaneous correlations between the exchange rate and the assets. 

These arbitrage-free relationships between the volatility and the drift terms as given in 

Proposition 2.1 can be employed to derive the arbitrage-free cross-currency BGM model and 

then applied to pricing cross-currency derivatives. 

2.2 Arbitrage-Free Cross-Currency BGM Model 

It is important to note that, thereafter, the term structure of interest rates is modeled by 

specifying the LIBOR rates dynamics, rather than the forward rates dynamics. However, we 

still use the same notations, the same economic environment, and the arbitrage-free 

relationships between the drift and the volatility terms as given in Proposition 2.1 to derive 
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the cross-currency BGM model under the martingale measure. 

For some  0, 0,T    and  ,k d f , define the forward LIBOR rate process 

  , ;0kL t T t T   as given by 

   
 

,
1 ,

,
k

k
k

P t T
L t T

P t T



 


  exp ,

T

kT
f t u du


   (2.5) 

Wu and Chen (2007) have shown that the dynamics of the forward LIBOR rates and the 

exchange rate under the domestic spot martingale measure Q can be expressed by Proposition 

2.2 as follows. 

Proposition 2.2 THE CROSS-CURRENCY LIBOR MARKET MODEL UNDER THE 

DOMESTIC SPOT MARTINGALE MEASURE 

Under the domestic spot martingale measure Q, the processes of the forward LIBOR rates 

and the exchange rate are given as follows: 

 
         

,
, , ,

,
d

Ld Pd Ld
d

dL t T
t T t T dt t T dW t

L t T
          (2.6) 

 
            

,
, , ,

,
f

Lf Pf X Lf
f

dL t T
t T t T t dt t T dW t

L t T
           (2.7) 

 
          d f X

dX t
r t r t dt t dW t

X t
     (2.8) 

where    0, , 0,t T T    and    , , ,Pk t T k d f   is defined in (2.9). 

 

 
      1

1

,
, 0,

1 ,
,

& 0,
0 .

T t k
Lk

k
jPk

L t T j
t T j t T

L t T j
t T

T
otherwise

  
  

 




  



 
     

 


  (2.9) 

where  1 T t     denotes the greatest integer that is less than  1
T t


 . 

When the domestic ZCB is used as the numeraire, the domestic forward probability 

measure QT is induced. The domestic forward measure QT can be defined by the 

Radon-Nikodym derivative 
 

 
 

 

,
,

d
d

P T TT
P t T

T
t

dQ
dQ 



 . From the Radon-Nikodym derivative, the 

relation of the Brownian motions under different measures can be shown as:  

     ,Q T
PddW t dW t t T dt  . (2.10) 

Substituting (2.10) into all the equations of Proposition 3.2, we can obtain the results 
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presented by Proposition 2.3 below. 

Proposition 2.3 THE CROSS-CURRENCY LIBOR MARKET MODEL UNDER THE 

DOMESTIC FORWARD MARTINGALE MEASURE 

Under the domestic forward martingale measure QT, the processes of the forward LIBOR 

rates and the exchange rate are given as follows: 

 
            

,
, , , ,

,
d

Ld Pd Pd Ld
d

dL t T
t T t T t T dt t T dW t

L t T
            (2.11) 

 
              , , , ,

,
, Lf Pf Pd X Lf

f

f

t T t T t T t dt t T dW t
dL t T
L t T

            (2.12) 

 
              ,d f X Pd X

dX t
r t r t t t T dt t dW t

X t
         (2.13) 

where    0, , 0,t T T    and  ,Pk t T  is defined in (2.9). 

Unlike the instantaneous forward rates in the HJM model, the forward LIBOR rates are 

market observable. Therefore, the volatility  ,Lk t T  can be inversed from the market 

prices of the interest-rate derivatives traded in the market and  ,Pk t T  can be calculated 

from (2.9). Because of the lognormal volatility structure, the forward LIBOR rates are almost 

surely positive, thereby preventing the negative rate problem in the Gaussian HJM model. 

The cross-currency LIBOR market model is very general. It is useful for pricing many 

kinds of interest-rate derivatives. In Section 3, four variants of the cross-currency interest-rate 

exchange options are priced based on the cross-currency LIBOR market model. 

3. Valuation of Quanto Interest-Rate Exchange Options 

In this section, we derive the pricing formulae of four different types of quanto 

interest-rate exchange options (QIREOs) based on the cross-currency LIBOR market model. 

Introductions and analyses of each option are presented sequentially as follows. 

3.1 Valuation of First-Type QIREOs 

Definition 3.1 A contingent claim with the payoff specified in (3.1.1) is called a First-Type 

QIREO (Q1IREO) 
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     1 , ,d d fC T N L T T L T T 


    , (3.1.1) 

where  

 ,dL T T  =  the domestic T-matured LIBOR rates with a compounding period   

 ,fL T T  =  the foreign T-matured LIBOR rates with a compounding period  ,    
 dN  =  notional principal of the option, in units of domestic currency 

 T  = the maturity date of the option 
 x   =  ,0Max x  
   = a binary operator (1 for a call option and -1 for a put option). 

An Q1IREO is an option written on the difference between a domestic LIBOR rate with a 

compounding period   and a foreign LIBOR rate with a compounding period  , but the 

final payments are denominated in domestic currency. In addition, an Q1IREO with 1   

represents a call option on the domestic LIBOR rate with the foreign LIBOR rate serving as 

the floating strike rate. On the contrary, an Q1IREO with 1    denotes a put option with 

the foreign LIBOR rate as the underlying rate. 

There are several benefits and applications associated with Q1IREOs. First, Q1IREOs 

provide a mechanism for taking advantage of cross-currency interest-rate differentials 

without directly incurring exchange rate risk. Second, investors can benefit from utilizing a 

corresponding Q1IREO with making a correct assessment of the cross-currency interest-rate 

differential between two underlying LIBOR rates at some particular time point. Third, 

Q1IREOs also can be used to provide added precision to strategies incorporating differential 

swaps. For example, a portfolio manager might use a differential swap to capitalize 

anticipated yield curve movements while also purchasing an Q1IREO on the interest-rate 

differential in order to limit his downside risk. In addition, asset managers whose investments 

are mainly denominated in domestic currency can utilize Q1IREOs to enhance portfolio 

return. A structure of this type can also be employed by liability managers and borrowers to 

effectively limit interest rate payments to the lower of either the domestic or foreign currency 

interest rates, without incurring exchange rate risk exposure. 

Q1IREO pricing is expressed in the following theorem, and the proof is provided in 

Appendix A. 

Theorem 3.1 The pricing formula of Q1IREOs with the final payoff as specified in (3.1.1 ) is 

expressed as follows: 
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               1 1, , , ,

1 11 12, , ,
T T

d ft t
u T T du u T T du

d d d fC t N P t T L t T e N d L t T e N d
 

      
     

 
 (3.1.2) 

where 

 
      2

1 1 1

11
1

, 1ln , , , ,
, 2

Td
d ft

f

L t T
u T T u T T du V

L t T
d

V


 

    
              


 

12 11 1d d V   

   2 2
1 , ,

T

Ld Lft
V u T u T du    � �  

       1 , , , , ,d d

s s
P PLdd t T T t T t T t T

             
 

         1 , , , , ,f d

s s
P PLf xf t T T t T t T t T t

               
 

1   (a call) or -1 (a put). 

and      , , ,
s
Pk t k d f    is defined as (A.7) in Appendix A. 

The pricing equation (3.1.2) may be regarded as a generalized representation of Margrabe 

(1978) in the framework of the cross-currency LMM. Note that when both compounding 

periods are identical (  ), the pricing formula (3.1.2) reduces to the pricing model of a 

regular option on the spread between the domestic and the foreign LIBOR rates in the 

cross-currency LMM framework. 

Theorem 3.1 not only provides the pricing formula for the Q1IREOs but also reveals a 

clue to the construction of a hedging (replicating) portfolio for the Q1IREOs. 

For hedging, we rewrite equation (3.1.2) as equation (3.1.3) (the proof is provided in 

Appendix A) as follows  

             1 1
1 1 2, , , ,t d d t f fC t P t T P t T P t T P t T             , (3.1.3) 

where 

        1 , ,1
1 11

11 ,
T

dt
u T T du

t d dN L t T N d e


   


    

        1
2 12 1

11 , ,t d dN L t T N d QA t T   


     

   
   1 1

,
, ,

,
d

f

P t T
QA t T t T

P t T


 



 


      

   1 , ,

1 ,
T

ft
u T T du

t T e


 


 . 

Equation (3.1.3) serves as a guide to the formation of a hedging portfolio  1
tH  for an 
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Q1IREO.  1
tH  can be completed by a linear combination of four types of assets: holding 

long  1
1t  units of  ,dP t T  and   1

2t  units of  ,fP t T   and selling short  1
1t  units of 

 ,dP t T   and   1
2t  units of  ,fP t T . 

The term  1 ,QA t T   appearing in (3.1.3) denotes the quanto adjustment due to the 

hedged risk of the exchange rate. This exchange rate adjustment is induced by the fact that 

expected foreign cash flow is derived under the domestic martingale measure, and by the 

compound correlations between all the involved factors (the domestic and foreign bonds and 

the exchange rate). 

It is worth noting that the advantage of adopting the cross-currency BGM model rather 

than other traditional models is that all the parameters as shown in (3.1.1) and (3.1.2) can be 

easily obtained from market quotes, which makes the pricing formula more tractable and 

feasible for practitioners. 

3.2 Valuation of Second-Type QIREOs 

Definition 3.2 A contingent claim with the payoff as specified in (3.2.1) is called a 

Second-Type QIREO (Q2IREO) 

     2 , ,f f fC T X N L T T L T T  
    , (3.2.1) 

where 

fN = notional principal of the option, in units of foreign currency 

X  = the fixed exchange rate expressed as the domestic currency value of one unit of 
foreign currency. 

An Q2IREO is an option written on the difference between two foreign LIBOR rates with 

different compounding periods   and   , but the final payment is measured in domestic 

currency. From the viewpoint of domestic investors, holding an Q2IREO acts in much the 

same way as longing a foreign yield-spread option, whose payoff is based on the difference 

between the two underlying foreign interest rates, denominated in foreign currency, and 

converting the foreign-currency payoff via multiplying the fixed exchange rate into the 

domestic-currency payoff.  

Using Q2IREOs has several benefits and applications. Domestic investors can benefit 

from utilizing a corresponding Q2IREO with making a correct estimate of the differential 

between two foreign LIBOR rates at some particular time point, thereby avoiding exposure to 



 12

exchange rate risk. For multinational enterprises or managers of cross-currency financial 

assets, Q2IREOs can be used to enhance the interest profit of foreign assets or to reduce the 

interest cost arising from foreign liabilities without incurring exchange rate risk. Furthermore, 

Q2IREOs can be used to limit the downside risks of some particular payments if a manager of 

cross-currency financial assets wants to manage the risk of foreign interest rate spread via a 

long-period foreign basis swap involving the exchange of two series of floating-rate cash 

flows in the same foreign currency. 

The pricing formula of Q2IREOs is expressed in Theorem 3.2 below and the proof is 

provided in Appendix B. 

Theorem 3.2 The pricing formula of Q2IREOs with the final payoff as specified in (3.2.1) is 

presented as follows: 

               2 2, , , ,

2 21 22, , ,
T T

f ft t
f d

u T T du u T T du

f fX N P t TC t L t T e N d L t T e N d
 

         
 

 (3.2.2) 

where 

 
      2

2 2 2

21
2

, 1ln , , , ,
, 2

Tf
f ft

f

L t T
u T T u T T du V

L t T
d

V


 

    
              


 

22 21 2d d V   

   2 2
2 , ,

T

Lf Lft
V u T u T du    � �  

           2 , , , , , , ,f d

s s
P PLf xf t T T t T t T t T t      

            
. 

Longstaff (1990), Fu (1996) and Miyazaki and Yoshida (1998) have derived the pricing 

formulae for interest rate difference options, which are written on the underlying difference 

between two domestic interest rates and denominated in domestic currency. In comparison 

with their pricing formulae, the major differences between Theorem 3.2 and their formulae lie 

in the fact that not only the “quanto-effect” is considered in Theorem 3.2, but also all 

parameters appearing in Theorem 3.2 can be extracted from market quotes, which makes our 

pricing formula more tractable and feasible for practitioners. 

Once again, equation (3.2.2) can be written in terms of (3.2.3), and the proof is presented 

in Appendix B. 

             2 2
2 1 2, , , ,t f f t f fC t P t T P t T P t T P t T              , (3.2.3) 
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where 

        2
1 21 2

11 , ,t f dX N L t T N d QA t T 


     

        2
2 22 2

11 , ,t f dX N L t T N d QA t T 


     

   
     2 2

,
, , , ,

,
d

f

P t T
QA t T t T

P t T
  

  


 

     2 , ,

2 , , ,
T

ft
u T T du

t T e


  


   .  

  Equation (3.2.3) shows the composition of a hedging portfolio  2
tH  for an Q2IREO: it 

holds long  2
1t  units of  ,fP t T  and  2

2t  units of  ,fP t T   and sells short  2
1t  units 

of  ,fP t T  and  2
2t  units of  ,fP t T . The implication of the quanto adjustment 

 2 ,QA t   is similar to  1 ,QA t T   as mentioned above. 

3.3 Valuation of Third-Type QIREOs 

Definition 3.3 A contingent claim with the payoff as specified in (3.3.1) is called a 

Third-Type QIREO (Q3IREO) 

       3 , ,f f fC T X T N L T T L T T  
    , (3.3.1) 

where  

 X T = the floating exchange rate expressed as the domestic currency value of one unit 
of foreign currency at time T. 

An Q3IREO is analogous to the Q2IREO as specified in Subsection 3.2, but with the fixed 

exchange rate X  replaced by the floating exchange rate  X T  at maturity T. The structure 

of an Q3IREO is slightly different from that of an Q2IREO in that this option is directly 

affected by movements in the exchange rate. If the exchange rate moves upward, an investor 

using this option could enhance profits from the difference between both the foreign interest 

rates and the exchange rate. And a seller of this option could reduce payments due to 

downward movements in a foreign currency’s value. 

Since the Q3IREO can be priced in a similar way as the Q2IREO, we omit the proof. The 

result is available upon request from the authors. 

Theorem 3.3 The pricing formula of Q3IROs with the final payoff as expressed in (3.3.1 ) is 

presented as follows: 



 14

       
 

   
 

 3 3

3 31 32

, , , ,
, , ,

T T
f ft t

f f f f

u T T du u T T du
C t X t N P t T L t T N d L t T N de e

 
 

      
      

  
  

  

  , (3.3.2) 

where 

 
      2

3 3 3

31
3

, 1ln , , , ,
, 2

Tf
f ft

f

L t T
u T T u T T du V

L t T
d

V


 

    
              


 

32 31 3d d V   

   2 2
3 , ,

T

Lf Lft
V u T u T du    � �  

         3 , , , , , , ,f f

s s
P PLff t T T t T t T t T     

           
. 

Similarly, we rewrite (3.3.2) to obtain (3.3.3) as follows 

             3 3
3 1 2, , , ,t f f t f fC t P t T P t T P t T P t T              , (3.3.3) 

where 

          3 , ,3
1 31

11 ,
T

ft
u T T du

t f fX t N L t T e N d


 


    

          3 , ,3
2 32

11 ,
T

ft
u T T du

t f fX t N L t T e N d


 


   . 

Equation (3.3.3) also implies a composition for a hedging portfolio  3
tH  similar to that 

given in the previous theorems. It is worth noting that the quanto adjustment disappears in 

(3.3.3), since the exchange rate risk in the Q3IREO is unhedged; this option is directly 

affected by unanticipated changes in the exchange rate. 

3.4 Valuation of Fourth-Type QIREOs 

Definition 3.4 A contingent claim with the payoff as specified in (3.4.1) is called a 

Fourth-Type QIREO (Q4IREO) 

       4 , ,f f d dC T X T N L T T N L T T 


    . (3.4.1) 

   = a binary operator (1 for a call option and -1 for a put option). 

An Q4IREO is an option written on the difference between a foreign interest payment 

based on the foreign LIBOR rate with a compounding period   and a domestic interest 

payment based on the domestic LIBOR rate with a compounding period  . 

This option is slightly different from those options described in the above subsections. It 

can be considered as an option to exchange domestic-currency-denominated interest 
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payments for foreign-currency-denominated interest payments.  

Theorem 3.4 below presents the pricing formula of an Q4IREO. Its proof follows in a 

similar way as the previous options. The result is available upon request from the authors. 

Theorem 3.4 The pricing formula of Q4IREOs with the final payoff as expressed in (3.4.1 ) is 

presented as follows: 

           

       

4

4

, ,

4 41

, ,

42

, ,

, ,

T
gt

T
dt

u T T du

f f f

u T T du

d d d

C t X t N P t T L t T e N d

N P t T L t T e N d





 

 

 

 

   

   





 (3.4.2) 

where 

     
        2

4 4 4

41
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, , 1ln , , , ,
, , 2

Tf f f
g dt

d d d

X t N P t T L t T
u T T u T T du V

N P t T L t T
d

V


 

    
              


 

42 41 4d d V   

   2 2
4 , ,

T

g Ldt
V u T u T du    � �  

       4 , , , , ,f f

s s
P PLfg t T T t T t T t T

             
 

       4 , , , , ,d d

s s
P PLdd t T T t T t T t T

             
. 

In order to obtain a hedging portfolio, equation (3.4.2) is rewritten as equation (3.4.3).  

             4 4
4 1 2, , , ,t f f t d dC t P t T P t T P t T P t T             , (3.4.3) 

where 

          4 , ,4
1 41

11 ,
T

gt
u T T du

t f fX t N L t T e N d


   


    

        4 , ,4
2 42

11 ,
T

dt
u T T du

t d dN L t T e N d


   


   . 

Equation (3.4.3) shows the composition of a hedging portfolio  4
tH  for an Q4IREO: 

holding long  4
1t  units of  ,fP t T  and  4

2t  units of  ,dP t T   and selling short  4
1t  

units of  ,fP t T   and  4
2t  units of  ,dP t T . Due to the unhedged exchange-rate risk 

inherent in the Q4IREO, the quanto adjustment does not exist in equation (3.4.3) as in the 

case examined in Subsection 3.3; this option is directly affected by exchange-rate movements 

as well. 
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In Section 4, we provide a calibration procedure and numerical examples showing the 

accuracy of the pricing formulae. 

 

4. Calibration Procedure and Numerical Examples 

In this section, we first provide a calibration procedure and then examine the accuracy of 

the pricing formula via a comparison with Monte Carlo simulation. 

4.1 Calibration Procedure 

With the advantage of the pricing formulae for caps and floors which are consistent with 

the popular Black formula [1976], the cross-currency LIBOR market model is easier for 

calibration. We employ the mechanism presented by Rebonato [1999] to engage in a 

simultaneous calibration of the cross-currency LIBOR market model to the percentage 

volatilities and the correlation matrix of the underlying forward LIBOR rates and the 

exchange rate.  

Assume that there are n domestic forward LIBOR rates, n foreign forward LIBOR rates 

and an exchange rate in an m-factor framework. The steps to calibrate the model parameters 

are presented as follows: 

First, as given in Brigo and Mercurio [2001], we assume that the domestic forward 

LIBOR rate,  ,dL t  , has a piecewise-constant instantaneous total volatility structure 

depending only on the time-to-maturity (i.e., ,
d d

i j i jV   ). The elements in Exhibit 1, which 

specify the instantaneous total volatility applied to each period for each rate, can be stripped 

from market data. A detailed computational process is presented in Hull [2003].  

The case of the foreign forward LIBOR rate,  ,fL t  , can be carried out in a way similar 

to the domestic case. In addition, we also assume that the exchange rate  X t  has a 

piecewise-constant instantaneous total volatility structure. The elements in Exhibit 2, which 

represent the instantaneous total volatility applied to each period for the exchange rate, can be 

calculated from the prices of the on-the-run options in the market. However, the durations of 

the exchange rate options are usually shorter than one year, so the market-obtainable 

elements in Exhibit 2 are usually not sufficient for pricing interest options. This problem may 
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be resolved by using the implied (or historical) volatility of the underlying exchange rate, and 

assuming that the term structure of volatilities is flat (i.e.,   X Xt   for 0( , ]nt t t ). 

 

Exhibit 1: Instantaneous Volatilities of     ,
,k k d f

L t


  

Instant. Total Vol. Time 0 1( , ]t t t  1 2( , ]t t  2 3( , ]t t  … 2 1( , ]n nt t   

Fwd. Rate:  1,kL t t  1,1 0
k kV   Dead Dead … Dead 

 2,kL t t  2,1 1
k kV   2,2 0

k kV   Dead … Dead 

…
 … … … … … 

 1,k nL t t   1,1 2
k k

n nV    1,2 3
k k

n nV    1,3 4
k k

n nV    … 1, 1 0
k k

n nV     

 

Exhibit 2 : Instantaneous Volatilities of the Exchange Rate 

Instant. Total Vol. Time 0 1( , ]t t t  1 2( , ]t t  2 3( , ]t t  … 2 1( , ]n nt t   

Fwd. Rate:  X t  1 1XV   2 2XV   3 3XV   … Xn nV   

Second, we use the historical price data of the domestic and foreign forward LIBOR rates 

and the exchange rate to derive a full-rank (2n+1)×(2n+1)  instantaneous-correlation matrix 

 . Thus,   is a positive-definite symmetric matrix and can be written as 

                     'H H    

where H  is a real orthogonal matrix and   is a diagonal matrix. Let 1/ 2A H   and thus 

'AA   . In this way, we can find a suitable m-rank matrix B  such that the m-rank matrix 

'B BB   can be used to mimic the market correlation matrix  , where m ≤  2n+1. 

The purpose of the second step is to replace the 2n+1-dimensional original Brownian 

motions  dW t  with  BdZ t , where  dZ t  is a vector of m-dimensional Brownian 

motions. In other words, we change the market correlation structure 

                    'dW t dW t dt   

to a modeled correlation structure 

                        ' ' ' ' BBdZ t BdZ t BdZ t dZ t B BB dt dt     

The remaining problem is how to choose a suitable matrix B. Rebonato [1999] proposed 

the following form for the ith row of B : 
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1

, 1 ,
, 1

1 ,

cos sin 1,2,..., 1

sin

k
i k j i j

i k k
j i j

if k m
b

if k m

 









    
 

 

for 1,2,...,2 1i n  . By finding a   that solves the optimization problem 

          
2

, ,
, 1

min
n

B
i j i j

i j 

   

and substituting   into B , we obtain a suitable matrix �B  such that � � 'B BB   is an 

approximate correlation matrix for  . 

Third, �B  can be used to distribute the instantaneous total volatility to each Brownian 

motion at each period for the exchange rate and to each LIBOR rate without changing the 

amount of the instantaneous total volatility. That is, 

        �   �   �          , 1 2,1 , , 2 ,..., , , , , ,..., , ,k
i j Lk i Lk i Lkm iV B i B i B i m t t t t t t    

        �   �   �          1 2,1 , ,2 ,..., , , ,..., ,j X X XmB n B n B n m t t t     

where 1, 2,..., 1i n   and 1( , ]j jt t t , for each 1, 2,...,j n . 

Under the assumption that the instantaneous total volatility structures are 

piecewise-constant, the previous procedure represents a general calibration method without a 

constraint on choosing the number of factors. Via the distributing matrix �B , the individual 

instantaneous volatility applied to each Brownian motion at each period for each process can 

be derived. With these data calibrated from the market correlation matrix and volatilities, we 

can employ Monte Carlo simulation to price any associated interest rate derivatives. The data 

can also be used to calculate the prices of the QIREOs as derived in Theorems 1, 2, 3 and 4. 

 

4.2 Numerical Analysis 

This subsection offers some practical examples that examine the accuracy of the pricing 

formulas as derived in the previous section and compare the results with Monte Carlo 

simulation. Based on actual market data, as shown in Exhibits 5 to 10 in Appendix C, the 

1-year and 3-year Q2IREOs with 1
2    year and 1    in Theorem 1 are priced at 

different semiannually dates, and the results are listed in Exhibits 3 and 4. The flat volatility 

of the exchange rate is assumed to be 20%. The notional value is assumed to be $1. The 
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simulation is based on 50,000 sample paths. Note that in the examples, the domestic country 

is the U.S. and the foreign country is the U.K. By comparison to Monte Carlo simulation, the 

pricing formulas have shown to be accurate and robust for the recent market data. The 

empirical examples associated with the other three theorems have also shown satisfactory 

accuracy.6 

 

Exhibit 3: The 1-Year Q1IREO 

Date 2006/1/2 2006/7/3 2007/1/1 2007/7/2 

Thm 1 1.2683×10-3 1.2802×10-3 5.0714×10-3 9.5540×10-3 

M.C. 1.2682×10-3 1.2811×10-3 5.0779×10-3 9.5594×10-3 

s.e. 1.2812×10-5 1.2560×10-5 2.3516×10-5 2.8212×10-5 
The prices of a 1-year Q1IRO with semiannual accrual periods are presented in this exhibit. The abbreviations 

M.C. and s.e. represent the results of Monte Carlo simulations and their standard errors, respectively. 
 

Exhibit 4: The 3-Year Q1IREO 

Date 2006/1/2 2006/7/3 2007/1/1 2007/7/2 

Thm 1 4.0575×10-3 3.1143×10-3 5.6667×10-3 7.3662×10-3 

M.C. 4.0546×10-3 3.1229×10-3 5.6588×10-3 7.3560×10-3 

s.e. 7.4232×10-5 6.3378×10-5 8.5226×10-5 9.9884×10-5 
The prices of a 3-year Q1IRO with semiannual accrual periods are presented in this exhibit. 

 

5. Conclusions 

We have adopted a general cross-currency LIBOR market model to price four different 

types of QIREOs with four theorems. The derived pricing formulae represent the general 

formulae of Margrabe (1978) in the framework of the cross-currency LMM, and are familiar 

to practitioners for easy practical implementation. These pricing formulae have been 

examined to be very accurate as compared with Monte-Carlo simulation.  

Moreover, we have provided the hedging strategies for the QIREOs via the pricing 

formulae and discussed the calibration procedure in detail. Since the LIBOR rate is market 

observable and its related derivatives, such as caps and swaptions, are actively traded in the 

markets, it is easier to calibrate these model parameters than with traditional interest-rate 

models. Thus, the QIREO-pricing formulae derived under the cross-currency LIBOR market 
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model are more tractable and feasible for practical implementation. 



 21

Appendix A: Proof of Theorem 3.1 

A.1 Proof of Equation (3.1.2) 

By applying the martingale pricing method, the price of an Q1IRO at time t, 0 t T  , is 

derived as follows: 

 
 

   1 , ,
T

dt
r s ds

Q
d d f tC t N E e L T T L T T F 

   
 

      
  

 (A.1) 

 
 

 
 

     
,

, , , ,
d

d

d
d

P T T
P t TQ

d d d f tT
t

N E P t T L T T L T T F 





      

  
 (A.2) 

           , , 0, , , , d f
T

d d d f A t A L T T L T TN P t T E L T T L T T F                 (A.3) 

    
 

    
 

, , , ,T T
d d d A t d d f A t

A I A II

N P t T E L T T F N P t T E L T T F  

 

   
 

 (A.4) 

where 

 QE   denotes the expectation under the domestic martingale measure Q. 

 TE   denotes the expectation under the domestic forward martingale measure QT 

defined by the Radon-Nikodym derivative 
 

 
 

 

,
,

d
d

d
d

P T TT
P t T

T
t

dQ
dQ 



 . 

   is a binary operator (1 for a call option and -1 for a put option). 

IA  is an indicator function with 
   1, , , 0

0,
d fif L T T L T T

otherwise

      


. 

Part (A-I) and (A-II) are solved, respectively, as follows. 

From Proposition 2.3, the dynamics of  ,dL t T  and  ,fL t T  under the domestic 

forward measure QT are shown as follows: 

 
         ,

, , , ,
, d d

d T
Ld P P Ld t

d

dL t T
t T t T t T dt t T dW

L t T


 

             ,  (A.5) 

 
           

,
, , , ,

, f d

f T
Lf P P x Lf t

f

dL t T
t T t T t T t dt t T dW

L t T


 

               . (A.6) 

According to the definition of the bond volatility process     ,
,Pk t s T

t T


 in (2.9), 

    ,
,Pk t s T

t T


 is not deterministic. Thus, the stochastic differential equations (A.5) and 
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(A.6) are not allowed to solve the distributions of  ,dL T T  and  ,fL T T . We can, 

however, approximate  ,Pk t T  by  ,
s
Pk t T  which is defined by: 

 

 
      1

1

,
, 0,

1 ,
,

& 0,
0 .

T t k
Lk

s k
Pk j

L s T j
t T j t T

L s T j
t T

T
otherwise

  
  

 




  



 
     

 


  (A.7) 

where 0 s t T    and  ,k d f . Accordingly, the calendar time of the process 

    ,
,k t s T

L t T


 in (A.7) is frozen at its initial time s, thus the process   
 ,

,
s
Pk

t s T
t T


 

becomes deterministic. This is the Wiener chaos order 0 approximation, which is first used 

for pricing swaptions by BGM (1997). It was further developed in Brace, Dun and Barton 

(1998) and formalized by Brace and Womersley (2000). 
Substituting  ,

s
Pk t T  for  ,Pk t T  in the drift terms of (A.5) and (A.6), we obtain: 

 
         ,

, , , ,
, d

s sd T
P PdLd Ld t

d

dL t T
t T t T t T dt t T dW

L t T


 

             
,  (A.8) 

 
           

,
, , , ,

, f d

s sf T
P PLf x Lf t

f

dL t T
t T t T t T t dt t T dW

L t T


 

               
. (A.9) 

In this way, the drift and volatility terms in (A.8) and (A.9) are deterministic. Therefore, we 

can solve (A.8) and (A.9) and find the approximate distributions of  ,dL T T  and 

 ,fL T T . 

Solving the stochastic differential equations(A.8) and (A.9), we obtain: 

   
     2

1
1, , , ,
2, ,

T T T
Ld Ld udt t

u T T u T du u T dW

d dL T T L t T e
     

 
       


� �

, (A.10) 

   
     2

1
1, , , ,
2, ,

T T T
uLf Lfft t

u T T u T du u T dW

f fL T T L t T e
     

 
      


� �

 (A.11) 

where  

       1 , , , , ,d d

s s
P PLdd u T T u T u T u T

             
, (A.12) 

         1 , , , , ,f d

s s
P PLf xf u T T u T u T u T u

               
. (A.13) 

By substituting (A.10) into (A-I), (A-I) can be rewritten as: 

         2
1

1 , ,, ,
2,

T TT T
Ld Ld ud t tt

u T du u T dWu T T du T
d A tA I L t T e E e F

    


        
  

� �

 (A.14) 
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        1 1
, ,

, , , 0
T

dt
u T T du R

d r d f tL t T e P L T T L T T F


   
      . (A.15) 

 1R
rP   denotes the probability measured in the martingale measure R1 which is defined by 

the Radon-Nikodym derivative 
   21 , ,1 2

T T T
Ld Ld ut t

u T du u T dW

T

dR e
dQ

     
� �

.  

From the Radon Nikodym derivative 1
T

dR
dQ

, we know that 

 1 ,R T
t t LddW dW t T dt  . (A.16) 

Under the measure R1, we obtain the results by substituting (A.16) into (A.10) and (A.11): 

   
     2 1

1
1, , , ,
2, ,

T T R
Ld Ld udt t

u T T u T du u T dW

d dL T T L t T e
     

 
       


� �

, (A.17) 

   
         2 11, , , , , ,

2, ,
T T R

Ld uf Lf Lf Lft t
u T T u T u T u T du u T dW

f fL T T L t T e
         

 
         


� �

. (A.18) 

By inserting (A.17) and (A.18) into  1R
rP  , the probability can be obtained after 

rearrangement as follows: 

      1
11, , 0R

r d f tP L T T L T T F N d        (A.19) 

where  

 N   represents the cumulative density function of the normal distribution, 

 
      2

1 1 1

11
1

, 1ln , , , ,
, 2

,

Td
d ft

f

L t T
u T T u T T du V

L t T
d

V


 
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              


 (A.20) 

   2 2
1 , ,

T

Ld Lft
V u T u T du    � � . (A.21) 

The procedures to solve (A-II) are similar to those of (A-I). 

By substituting (A.11) into (A-II), (A-II) is derived as follows: 

         2
1

1 , ,, ,
2,

T TT T
uLf Lff t tt

u T du u T dWu T T du T
f A tA II L t T e E e F

    


        
  

� �   (A.22) 

        1 2
, ,

, , , 0
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u T T du R

f r d f tL t T e P L T T L T T F


   
     

. (A.23) 

 2R
rP   denotes the probability measured in the martingale measure R2 which is defined by 

the Radon-Nikodym derivative 
   21 , ,2 2

T T T
uLf Lft t

u T du u T dW

T

dR e
dQ

     
� �

.  

From the Radon-Nikodym derivative 2
T

dR
dQ

, we find that 



 24

 2 ,R T
t t LfdW dW t T dt  . (A.24) 

Under the measure R2, we obtain the results by substituting (A.24) into (A.10) and (A.11): 

   
         2 2

1
1, , , , , ,
2, ,

T T R
Ld Ld Ld uLfdt t

u T T u T u T u T du u T dW

d dL T T L t T e
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 
         


� �

, (A.25) 

   
     2 21, , , ,

2, ,
T T R

uf Lf Lft t
u T T u T du u T dW

f fL T T L t T e
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 
       


� �

. (A.26) 

Inserting (A.25) and (A.26) into  2R
rP  , we obtain 

      2
12, , 0R

r d f tP L T T L T T F N d        (A.27) 

12 11 1d d V  . (A.28) 

By combining A(4), A(15), A(19), A(23) with A(27), equation (3.1.2) of Theorem 3.1 is 

obtained. 

 

A.2 Proof of Equation (3.1.3) 

By definition, 

   
 

,1, 1
,

d
d

d

P t T
L t T

P t T


 
 

    
 (A.29) 

   
 

,1, 1
,

f
f

f

P t T
L t T

P t T


 

 
    

 (A.30) 

By substituting (A.29) and (A.30) into (3.1.2) and rearranging it, equation (3.1.3) is derived. 



 25

Appendix B: Proof of Theorem 3.2 

B.1 Proof of Equation (3.2.2) 

The pricing formula of an Q2IRO at time t, 0 t T  , is derived as follows: 

 
 

   2 , ,
T

dt
r s ds

Q
f f f tC t E e N X L T T L T T F 

   
 

      
  

 (B.1) 

           , ,, , , , f f

T
f d f f A t A L T T L T TN X P t T E L T T L T T F           (B.2) 

    
 

    
 

, , , ,T T
f d f A t f d f A t

B I B II

N X P t T E L T T F N X P t T E L T T F 

 

   
 

 (B.3) 

Parts (B-I) and (B-II) are then solved respectively. 

From Proposition 2.3, the dynamics of  ,fL t T  and  ,fL t T  under the domestic 
forward measure QT are listed as follows: 

 
             

,
, , , , , ,

, f d

f T
Lf P P x Lf t

f

dL t T
t T t T t T t dt t T dW

L t T
      


 


            (B.4) 

Substituting  ,
s
Pk t   as defined in (A.7) for  ,Pk t   in (B.4), we get 

 
             

,
, , , , , ,

, f d

s sf T
P PLf x Lf t

f

dL t T
t T t T t T t dt t T dW

L t T
      


 


          

 (B.5) 

By solving the stochastic differential equation (B.5), we obtain 

   
     

 
2

2
1, , , ,
2, , , ,

T T T
Lf Lf uft t

u T T u T du u T dW

f fL T T L t T e
  

 
          

 
� �

 (B.6) 

where  

           2 , , , , , , ,f d

s s
P PLf xf u T T u T t T t T u      

            
. (B.7) 

(B.6) is substituted into (B-I) to derive (B-I) as follows: 

         2
2

1 , ,, ,
2,

T TT T
Lf Lf uf t tt

u T du u T dWu T T du T
f A tB I L t T e E e F

    


        
  

� �

 (B.8) 

       2 1
, ,

, , ,
T

ft
u T T du R

f r f f tL t T e P L T T L T T F


        . (B.9) 

 1R
rP   denotes the probability measured in the martingale measure R1 which is defined by 

the Radon-Nikodym derivative 
   21 , ,1 2

T T T
Lf Lf ut t

u T du u T dW

T

dR e
dQ

     
� �

.  

From the Radon-Nikodym derivative 1
T

dR
dQ

, we know that 

 1 ,R T
t t LfdW dW t T dt  . (B.10) 
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Under the measure R1, we obtain the following results substituting (B.10) into (B.6) . 

   
     2 1

2
1, , , ,
2, ,

T T R
Lf Lf uft t

u T T u T du u T dW

f fL T T L t T e
     

 
       


� �

, (B.11) 

   
         2 1

2
1, , , , , ,
2, ,

T T R
Lf uLf Lf Lfft t

u T T u T u T u T du u T dW

f fL T T L t T e
         

 
         


� �

. (B.12) 

By inserting (B.11) and (B.12) into  1R
rP  , the probability can be obtained (after 

rearrangement) as follows: 

         1 1
21, , ln , ln ,R R

r f f t r f f tP L T T L T T F P L T T L T T F N d              (B.13) 

where  

 
      2

2 2 2

21
2

, 1ln , , , ,
, 2

,

Tf
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f

L t T
u T T u T T du V

L t T
d
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
 

    
              


 (B.14) 

   2 2
2 , ,

T

Lf Lft
V u T u T du    � � . (B.15) 

The solution of (B-II) can be derived by employing the same procedures and methods used 

for solving (B-I). Accordingly, the result is directly shown without expressing the details of 

the deriving processes. 

By substituting (B.6) into (B-II), (B-II) is obtained as below: 

               2 22
, , , ,

22, , , ,
T T

f ft t
u T T du u T T duR

f r f f t fB II L t T e P L T T L T T F L t T e N d
 

      


      
  (B.16) 

22 21 2d d V   (B.17) 

 2R
rP   denotes the probability measured in the martingale measure R2 which is defined by 

the Radon-Nikodym derivative 
   21 , ,2 2

T T T
uLf Lft t

u T du u T dW

T

dR e
dQ

     
� �

.  

By combining B(3), B(9) and B(13) with B(16), equation (3.2.2) of Theorem 3.2 is 

derived. 

B.2 Proof of Equation (3.2.3) 

By definition, 

   
 

,1, 1
,

f
f

f

P t T
L t T

P t T


 

 
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   
 
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P t T
L t T

P t T


 

 
    

 (B.19) 

By substituting (B.18) and (B.19) into (3.2.2) and rearranging it, equation (3.2.3) is derived. 



 27

Appendix C: The Market Data 

Exhibits 5 to 10 are drawn and computed from the DataStream database and used for the 

numerical example in the fourth section. 

Exhibit 5: The Exchange Rate 

Date 2006/1/2 2006/7/3 2007/1/1 2007/7/2 

UK/US 1.7226 1.8407 1.95795 2.0162 

The U.K./U.S. exchange rates are presented semiannually for the past 2 years. 
 

Exhibit 6: Domestic Cap Volatilities Quoted in the U.S. Market 

Date 2006/1/2 2006/7/3 2007/1/1 2007/7/2 

1  11.3 10.49 11.19 8.38 

2  15.62 13.07 14.75 12.43 

3  17.81 14.33 15.99 13.93 

The quoted volatilities of the caps in the U.K. market are presented semiannually for the past 2 years. 

 

Exhibit 7: Foreign Cap Volatilities Quoted in the U.K. Market 

Date 2006/1/2 2006/7/3 2007/1/1 2007/7/2 

1  11.58 8.6 8.02 8.19 

2  14.06 10.9 10.65 10.34 

3  14.75 11.93 11.47 11.23 

The quoted volatilities of the caps in the U.K. market are presented semiannually for the past 2 years.  
 

Exhibit 8: Initial Domestic Forward LIBOR Rates 

Date 2006/1/2 2006/7/3 2007/1/1 2007/7/2 

0.0  4.839 5.808 5.564 5.587 

0.5  5.014 5.908 5.412 5.485 

1.0  5.008 5.783 5.205 5.456 

1.5  5.058 5.717 5.001 5.388 

2.0  4.928 5.786 5.128 5.571 

2.5  4.896 5.762 5.045 5.603 

3.0  5.018 5.860 5.196 5.693 

The domestic initial forward LIBOR rates in the U.S. market are presented semiannually for the past 2 years. The 

rates are obtained from the associated bond prices derived from the zero curves obtained in DataStream. 
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Exhibit 9: Initial Foreign Forward LIBOR Rates 

Date 2006/1/2 2006/7/3 2007/1/1 2007/7/2 

0.0 4.699 4.943 5.577 6.316 

0.5  4.562 5.235 5.693 6.516 

1.0  4.630 5.424 5.675 6.533 

1.5  4.699 5.477 5.708 6.505 

2.0  4.713 5.432 5.599 6.463 

2.5  4.713 5.496 5.573 6.467 

3.0  4.679 5.356 5.448 6.329 

The foreign initial forward LIBOR rates in the U.K. market are presented semiannually for the past 2 years. The 

rates are obtained from the associated bond prices derived from the zero curves obtained in DataStream. 
 

Exhibit 10: The Three-Factor B Matrix 

 Factor 1 Factor 2 Factor 3 

Ld (0, 0.5) 0.8072 0.508 0.3007 

Ld (0,1.0) 0.476 0.8485  - 0.2312 

Ld (0,1.5) 0.2997 0.8126  - 0.4998 

Ld (0,2.0) 0.0972 0.7492  - 0.6551 

Ld (0,2.5) 0.2962 0.7678  - 0.5682 

Ld (0,3.0) 0.2545 0.739  - 0.6239 

Lf (0,0.5) 0.3355 0.7463  - 0.5749 

Lf (0,1.0) 0.8557  - 0.4981 0.1406 

Lf (0,1.5) 0.9273  - 0.3631 0.0907 

Lf (0,2.0) 0.9608  - 0.2767  - 0.0176 

Lf (0,2.5) 0.9428  - 0.2783  - 0.1836 

Lf (0,3.0) 0.9566  - 0.2546  - 0.1417 

X 0.9605  - 0.2002  - 0.1932 

The matrix B is computed based on the correlation matrix of the relevant variables calculated from the data of the 

period January 2, 2006/July 2, 2007. 
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Notes 
1. We call, respectively, the BGM and the HJM model that are extended to a 

cross-currency economy and include the exchange rate dynamics in the model setting the 

cross-currency BGM model and the cross-currency HJM model. 
2.     , : , : 0

kf
t T t s t s T      is jointly measurable, adapted and 

 
0

, . . .
k

T

f u T du a e P    

  : , : 0fki t s t s T      are jointly measurable, adapted and 

 2

0
, . . . 1, 2,...,

T

fki u T du a e P for i m    . 

3.  : 0,Xi    is deterministic for 1, 2,...,i m .  : 0,X    is adapted, jointly 

measurable and satisfied    2

0

T

XE u du      . 

4. The Fundamental Theorem of Asset Pricing indicates that if there exists a unique 

martingale measure, then the economy is complete and arbitrage-free. 

5. We can do it as well from the foreign perspective. 
6. We do not report here to keep the paper within a reasonable length. The result is 

available upon request from the authors. 
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